Hello,
There are several method of statistical analysis between groups such as ANOSIM, ANOVA, PERMANOSIM PERMANOVA.
This Posting is about Analysis of Similiarity (ANOSIM).
The interpretation of ANOSIM is well explained below of Google WIKIPedia.
https://en.wikipedia.org/wiki/Analysis_of_similarities
Theory, equation, interpretation, etc.
Here is about how to statistically analysis the data by R program command lines.
Packages are used with "vegan".
1. Install packages
################### Install Packages #######################
install.packages("vegan")
########################################################
2. Input dataframe # watch attached file to figure out data format.
##################### Load Dataframe ######################
pc = read.csv("F:/SRA/ANOSIM/Canine_Feline_ANOSIM_test.csv", header= TRUE)
#########################################################
3. Data analysis and pretreatment
##################### Processing ##########################
com = pc[,3:ncol(pc)]
m_com = as.matrix(com)
ano = anosim(m_com, pc$Host, distance = "bray", permutations = 9999)
##########################################################
4. Check the results
####################### Result #############################
ano
##########################################################
R command Running example
> library(vegan)
> pc = read.csv("F:/SRA/ANOSIM/Canine_Feline_ANOSIM_test.csv", header= TRUE)
> #make community matrix - extract columns with abundance information, turn data frame into matrix
> com = pc[,3:ncol(pc)]
> m_com = as.matrix(com)
> ano = anosim(m_com, pc$Host, distance = "bray", permutations = 9999)
> ano
Call:
anosim(x = m_com, grouping = pc$Host, permutations = 9999, distance = "bray")
Dissimilarity: bray
ANOSIM statistic R: 0.15
Significance: 1e-04
Permutation: free
Number of permutations: 9999
ANOSIM R value simply interpretation
Result:
Significance is p-value. The value is 0.0001, so statistically significance, and R value indicate somehow similiar with some differences.
Analysis..... It looks like professional, but nothing if you understand it.
'R > R_Usage [Eng.]' 카테고리의 다른 글
Correlation Plot Visualization "Corrplot" with Rstudio. (1) | 2022.11.15 |
---|---|
Heatmap visualization in Rstudio _ high resoultion figure (0) | 2022.11.08 |
Rstudio_ working directory default setting (0) | 2022.11.07 |
Microbiome beta-diversity 3D plot in R (mds, pcoa) (0) | 2022.11.03 |
Meaning of "header =" in R and colnames default setting (0) | 2022.11.03 |